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A~~aet-Radiative heat transfer in two-tensional r~~n~ar enclosures is studied using the S-N 
discrete ordinates method. The medium in the enclosure is gray and absorbs, emits, and anisotropically 
scatters radiative energy. General Mie-anisotropic phase functions are treated by Legendre polynomial 
expansions. The average incident radiations and the radiative heat fluxes are presented in graphical and 
tabular forms. The phase function anisotropy plays a significant role in the radiation heat transfer when 
the boundary condition is nonsymmet~c, but it is not important for symmetric enviro~ents. Side wall 
heat losses are significant for back scattering phase functions, moderate optical thicknesses, large scattering 

albedos, and small reflectivities. 

1. lNTRODUCTlON 

RADIATIVE transfer is an important heat transfer pro- 
cess for high temperature applications such as com- 
busters, nuclear reactors, many industrial processes, 
and solar energy systems. Radiation has complicated 
transfer mechanisms that are difficult to model even 
in a simple system. Early investigations predicted one- 

dimensional radiative transfer in planar media using 
various solution techniques. Recent publications in 
one-dimensional radiative transfer study include 
general Mie-anisotropic scattering, azimuthal depen- 
dence, and non-gray features [l-4]. There has also 
been considerable effort to solve the multidimensional 
radiative energy transfer accurately. Two-dimensional 
isotropic scattering cases are treated by Fiveland [S], 
using the S-N discrete ordinates method, Thynell and 
&sik [6], by using the finite element method, and 
Ratzel and Howell [7], by using the P-3 spherical 
harmonics method. Stephens [8] presents a doubling 
formulation to be applied to optically thick two- 
dimensional anisotropic scattering media, and dem- 
onstrate it for some isotropic scattering cases. Crosbie 
and Schrenker [9] also have presented some two- 
dimensional isotropic scattering results. Three-dimen- 
sional P- 3 results are reported by Mengiic and Vis- 
kanta [lo]. All the multidimensional cases reported 
in these references are either for isotropic or simple 
anisotropic scattering media. 

In this study, radiative energy transfer in a two- 
dimensional rectangular enclosure, with gray, absorb- 
ing, emitting, and anisotropically scattering media, is 
modeled using the S-N discrete ordinates method. A 
complete Mie-s~tte~ng phase function is incor- 
porated into the numerical solution. The S-N discrete 
ordinates method, used for this study, is discussed in 
detail in ref. [l 11, but a brief outline of the for- 
mulations is presented in the following sections. 
Effects of the anisotropy of the scattering phase func- 

tions, the aspect ratio, the optical thickness, the scat- 
tering albedo, and the boundary reflectivity, on the 
radiative transfer are examined. pure scattering and 
absorbing-~atte~ng cases are investigated, 

A computer code is written for the S-N discrete 
ordinates method in two-dimensional Cartesian coor- 
dinates. This program can handle general rectangular 
enclosure problems, including absorbing, emitting, 
and anisotropic scattering media with collimated or 
diffuse incidence. The radiative intensity field, average 
incident radiation, and the radiative heat flux are 
obtained using the S-14 approximation. The one- 
dimensional version of the code has been successfully 
tested against solutions reported in ref. [l], for prob- 
lems with Mie-scattering phase functions and col- 
limated incidence. Solutions for an isotropically 
scattering medium in two-dimensional rectangular 
geometry has also been obtained and compared with 
published results [5-71. Two-dimensional Mie-aniso- 
tropic scattering cases are presented without com- 
parison, since to our knowledge, there are no pub- 
lished results for these cases. 

2. RADIATIVE TRANSFER EQUATION 

The radiative transfer equation describing the 
intensity, 1, in a rectangular absorbing, emitting and 
anisotropically scattering medium is 
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NOMENCLATURE 

aspect ratio, L/H or z,JzYH 
control volume face areas normal to 
the x-coordinate 
control volume face areas normal to 
the y-coordinate 
expansion coefficients of phase 
function 
emissive power 
average incident radiation 
height of the rectangular enclosure 
monochromatic radiative intensity 
direction cosines : p if i = 1; r if i = 2 
length of the rectangular enclosure 
total number of ordinate directions 
inward normal vector to enclosure 
walls 
order of phase function expansion 
Legendre polynomials of order ,j 
radiative flux vector 
net radiative heat fluxes in the 
_xZ-coordinates 
source term defined by equation (2) 
volume of the control volume 
angular weights 
spatial differencing weights of the 
x-direction 
spatial differencing weights of the 
y-direction. 

Greek symbols 

%I ratio of spatial mesh size to direction 
cosine, Ar,/p, 

P extinction coefficient 

Ym ratio of spatial mesh size to direction 
cosine, AZ,}&,, 

Dirac delta function 
wall emissivity 
polar angle 
absorption coefhcient 
direction cosine in the .x-direction, 
cos 0 
direction cosine in the y-direction, 
sin 8 cos 50 
reflectivity of the enclosure wall 
scattering coefficient 
optical coordinates, fix and By, 
respectively 
overall optical thicknesses, flL and 
/IH, respectively 
azimuthal angle 
scattering phase function 
scattering angle 
scattering albedo, as//I 
ordinate direction, (p, c). 

Superscripts 
* non-dimensional variable 
+ positive direction 
- negative direction 

incident direction. 

Subscripts 
b blackbody 
m angular index 
n, s, e, w compass directions 

P control volume center point 
W wall. 

and the variables are defined in the Nomenclature. Was $1 = @(I& cp ; $7 $1 
The single scattering phase function may be approxi- 
mated by a finite series of Legendre polynomials as 

@(fX ; $2) = aqcos t/t) 

= ,j* C,P,(cos $1 (3) 

and the argument can be obtained as 

cosg ==~~‘+(l--1**)‘~*(1-~‘*)“2cos(~‘-(p). (4) 

The Cis are the expansion coefficients obtained by the 
procedure suggested by Clark et al. [ 12]. The required 
Mie coefficient information is obtained by slightly 
modifying a code by Wiscombe [ 131. The phase func- 
tion is further expanded by the addition theorem of 
spherical harmonics [14]. Equation (3) is rewritten 
using equation (4) as 

where 

p = $-“‘! 
I J (J-trn)! 

and 

6 c8.m =lifm==O 

= 0 otherwise 

and the y’s are the associated Legendre polynomials 
of order j. 
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FIG. 1. System geometry. 

The radiative transfer equation is to be solved for 
an enclosure shown in Fig. 1. The rectangular enclos- 
ure has an aspect ratio of a = L/H. The enclosure 
walls are gray and diffusely reflecting, and they may 
also be sources for thermal radiation. The wall inten- 
sities are written as 

fern-R>O. (6) 

In this study, the diffuse radiative source due to Zbw is 
considered to be nonzero only at the bottom wall (wall 
3) for boundary incidence problems. 

Once the intensity field is obtained, the average 
incident radiation and the radiative heat fluxes are 
obtained as 

(27x9 7y) = 
s 

1(7x, 7y, Q) dQ (7) 
4n 

4?; (7x, 7,) = s M7,, 7,e a) dfk i= I,2 (8) 
P.5>0 

Qx; (7x9 7,) = 
s 

M7x, 7,n Q> da, i=1,2 (9) 
P,‘t<O 

where i = 1 indicates the x-direction quantities and 
i = 2 indicates the y-direction quantities. The 1:s are 
the direction cosines, p or 5, for the corresponding 
coordinates. The net radiative heat fluxes are then 
obtained by summing up the positive and the negative 
components of the Q’s as 

Qx,h~y) = Q:(Lz,J+Q,(L,~,) (10) 

where Q; is always negative by the definition given 
in equation (9). 

3. DISCRETIZATION AND NUMERICAL 
SOLUTION 

The S-N discrete ordinates method replaces the 
radiative transfer equation with a set of equations 
for a finite number of M ordinate directions [14]. 
For a specific ordinate direction m, defined by 
a, = (p,,,, &J, the integral in the source term (equa- 
tion (2)) is replaced by a quadrature of order M with 
the appropriate angular weights w, 

S(L r,, a,) = (1 -O)Z,(L 7,) 

+ ; t wm,Z(7,, 7y, Qn~>@@,~ ; Qm). (11) 
m’- I 

To solve the discrete ordinates equation, the rec- 
tangular enclosure is subdivided into small control 
volumes by MXx MY meshes. Within each control 
volume, the spatially discretized equation for the radi- 
ative intensity in the ordinate direction CJ, is derived 

as PI 

+ A I’ZPm = A KS,,, m= l,...,M (12) 

where e, w, n, and s are the boundaries in the compass 
directions and p is the center point of the control 
volume. The area and the volume elements are given 
by considering a unit depth in the z-direction 

A,=A,=Ar;l 

&=B,=AT;~ 

AV= A~~Azr.1 

AT, = (rJc - (r,), 

A7y = <7y>n - (7J.. (13) 

The solution of equation (12) approximates the solu- 
tion of the radiative transfer equation (equation (1)). 

The number of unknown Z’s in equation (12) is 
reduced by using one of several relationships between 
the control volume boundary intensities and the 
center point intensity [l 11. The weighted diamond 
difference scheme is used in this study to relate the 
intensities in the control volume. The weighted 
relationship of the cell boundary intensities to the 
average intensity in the cell is expressed as 

Zpm = Wxmlem + (1 - ~Xfn)ZV/m 
= W,,Z”, + (1 -w&Z, (14) 

when both of the direction cosines, p,,, and &,,, are 
positive. If ,u,,, is negative, I,,,, is multiplied by (1 - w_,,) 
and Z,, by w,,. The y-direction relationship also 
obeys a similar rule. The w, and wym are appropriate 
differencing weights in the x- and the y-directions, 
taken between 0.5 and 1. For example, w,, = w,,, = 1 
denotes a step function relation, which gives less 
accurate results, and w,, = wym = 0.5 denotes the 
standard diamond difference. When the weights are 
equal to OS, this sometimes results in unrealistic nega- 
tive intensities during the solution process. To avoid 
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this abnormal situation, a positive scheme suggested 
by Lathrop [ 151 is applied in selecting the differencing 
weights. For the positive p, and c,, the expressions 
for the differencing weights are 

Km = I_-J!fL 
tl,(y, +2) wnh wXm 

= max (w,,O.5) 
V*Q = 47c(l -0) Zb(z,,,z,.) 

(15a) 

volume, the rebalance factor for that control volume 
should be equal to one. 

To derive the expressions for the rebalance factors, 
an expression for the divergence of the radiative flux 
[ 171 is used, which is of the form 

WWl =I_- CL, 
Ym (CL,” + 2) 

with w,, = max (w,,,,, 0.5) 

(1%) 

where u, = Ar,.p,,, and ym = Az,,/~~. 
If I,, and I, are assumed to be known, where the 

iteration is in a direction of positive direction cosines 

and in the increasing space dimensions, then the equa- 
tion (12) can be reduced to eliminate the intensities 
Z,, and I,,,, , using equation (14). Solving for Zpm yields 

(16) 

where 

A = (1 -w,,)A.Jw,, +A, 

B = (1 - wy,)B~/wy,j, + B,. 

The boundary condition expressed in equation (6) 
can also be expressed in a discretized form for each 
boundary wall. These expressions are similar to those 
found in ref. [5]. Equations (11) and (16) are used 
to construct a numerical code, which solves for the 
angular intensity distribution at every grid point in 
the medium. The required ordinates set, I*,,, and l,, 
and the corresponding angular weights, w,, are taken 

from the code TWOTRAN [ 161. 
An iterative solution of equation (16) is re- 

quired, since the source terms, S,,, are functions of 
the unknown cell average intensities, Zpm. The source 
terms for equation (16) are computed from the inten- 
sity values of the previous iterations, by using equa- 
tion (11). After the new intensity values are obtained, 
the source terms are recomputed using the updated 
cell average intensities. The initial values for the Zpm’s 
are set equal to zero, i.e. the source terms are all zero 
in the beginning of the solution. For fast iteration 
convergence, and to avoid unnecessary coupling 
between the discrete ordinate equations, a special 
spatial-angular iteration procedure [ 161 is applied 
to the solution. 

As a means to check the energy balance in each 
control volume, and to accelerate the convergence of 
the numerical solution, the energy balance is com- 
puted during every iteration. This is done by con- 
sidering the total gain and the total loss from a control 
volume. Rebalance factors are introduced to assure a 
correct balance of the energy in each control volume, 
and the corresponding intensities are multiplied by 
these factors. When the energy is balanced in a control 

If any of the rebalance factors have negative values 
or do not converge after a given iteration limit, a 
representative rebalance factor for the whole system 
is obtained by balancing the overall energy of the 
system. A detailed discussion of the rebalance tech- 
nique can be found in ref. [ 161. 

Convergence is checked during the iteration process 
using the cell average intensities at the current and the 
previous iterations. It is assumed that the convergence 

is obtained, when the maximum percentage error of 
the intensities is less than 0.0001%. 

4. RESULTS 

A discussion of the numerical study performed for 
some selected cases is given below. Since this study 

focuses on the effect of anisotropic scattering, most of 
the cases considered are pure scattering (w = l), 
where the scattering is most significant. The phase 
functions listed in Table 1 and also shown in Fig. 2. 
are studied to examine the effect of anisotropy. The 
expansion coefficients for the phase functions Fl and 
F2 are computed from the modified Mie code with 
the particle size parameters of 5 and 2, respectively. 
for a refractive index of (1.33, 0). Coefficients for Bl 
are cited from ijzisik [ 181, for a size parameter of 1 
and an infinite refractive index. B2 is obtained from 
a phase function expression for small particles with 
very large refractive indices [ 171. The asymmetry fac- 

tors of the phase functions are also given in Table 1 

as C,/3 [19]. 
For the numerical study, the enclosure is subdivided 

into 26 x 26 control volumes, for all the cases except 
for optical thicknesses larger than 2.5, where 52 x 52 
control volumes are used. Due to the enormous 
amounts of computer time, finer mesh solutions arc 
not attempted (40-120 CPU s for 26 x 26 cases, and 
800-l 700 CPU s for 52 x 52 cases on Cray 2). 

The S- 14 approximation. which computes 112 
fluxes over the hemisphere, is used for all of the cases 
considered. For the phase functions considered in this 
study, the S-14 approximation is quite accurate. 
Several different orders of S-N solutions are com- 
pared in Fig. 3, which shows the net radiative heat 
flux, Q,*, along the centerline, for a boundary inci- 
dence problem. The phase function F2 is considered 
to demonstrate the convergence of the solution. The 
heat flux results are shown to not change noticeably 
above the S- 10 approximation, and the S- 14 results 
are’shown to be quite accurate. If S- 16 is taken as 
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Table 1. C,, the expansion coefficients for the phase functions 

j Fl F2 Bl B2 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Number 
of 

terms 
CJ3 

Average 
percentage 

error 
s-14 

1.00000 
2.53602 
3.56549 
3.97976 
4.00292 
3.66401 
3.01601 
2.23304 
1.30251 
0.53463 
0.20136 
0.05480 
0.01099 

13 9 6 3 
0.84534 0.66972 -0.18841 -0.40000 

1.76454 0.07127 0.00321 0.000009 

1.00000 
2.00917 
1.56339 
0.67407 
0.22215 
0.04725 
0.00671 
0.00068 
0.00005 

10.00 h 

1.00000 1.OOOOO 
-0.56524 - 1.20000 

0.29783 0.50000 
0.08571 
0.01003 
0.00063 

Note : F indicates that the phase function has peak values in the 
forward direction and B in the backward direction. 

0.011 0 . ’ ’ n ’ ’ ’ ’ . 1 

0 20 40 60 60 100 120 140 160 160 

scattering angle, * (‘) 

FIG. 2. Scattering phase functions. 

the exact solution, the S- 14 approximation for F2 
results in 0.0556% average error and the Fl results in 
0.1036% average error. 

A further indication of the S- 14 accuracy is shown 
by checking the normalization of the phase functions. 
The inaccuracy of anisotropic scattering solutions is 
mainly due to the error in the integration of the phase 
function. The normalization of the phase function is 
described by 

The percentage error of the phase function nor- 
malization for direction m is then obtained as 

(% error), = 1 - & E w,@,,, x 100. (19) 
rn’- I 
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FIG. 3. Comparison of the different orders of S-N approxi- 
mation for F2 phase function (p = 0, w = 1.0, 

r,L = ryI, = 1.0). 

As shown in Table 1, all the phase functions con- 
sidered normalize to less than 0.1% average error 
except for Fl, when the S- 14 approximation is used. 
The average normalization error of Fl for S- 16 is 
1.4576%, showing only a slight improvement over the 
S- 14 result. For highly anisotropic phase functions, 
a higher order S-N approximation should give better 
results. The improvement for the Fl phase function 
using the S- 16 approximation is found to be small. 

Using the S- 14 approximation, enormous 
amounts of data have been generated, including the 
radiative intensity, the average incident radiation, and 
the heat flux over the whole region in the enclosure. 
Presentation is limited only to the quantities of 
average incident radiation and radiative heat flux, 
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FIG. 4. Effect of anisotropy on the centerline net radiative 
heat flux in the y-direction (p = 0. UI = 1.0, and 

T,l_ = TX1 = 1.0). 

which are important to heat transfer. Intensity data 
are not provided in this paper. Dimensionless quan- 

tities, G* = G/4E, Qf = Q,/E, Q,‘* = Q,‘lE, and 
Q; * = Q; /E, where E represents Ebw for boundary 
incidence problems and Eb for isothermal emission 

problems, are presented. 

4.1. Boundary incidence problems 
Boundary incidence problems are studied, where 

one wall is kept hot, but all other walls and the 

medium are kept cold. Ebw3 = E,,,,, = const. and 
Ebwi = Eb = 0 for i = 1, 2 and 4, i.e. the radiative 

energy source is applied only at ?‘y = 0. The effect of 
the anisotropy on the radiative heat transfer is most 
significant for non-symmetric environments, and the 
boundary incidence problems are good examples for 
studying this effect. Effects of other important par- 
ameters on the radiative heat transfer are also exam- 
ined. These parameters are the aspect ratio of the 

enclosure, the scattering albedo, the wall reflectivity, 
and the optical thickness. 

The net radiative heat fluxes in the y-direction, 
QF’s, along the centerline (7, = O.~Z,,) of a black 
square enclosure are presented in Fig. 4, for pure 
scattering media with different phase functions. In 
Table 2, the corresponding data set is provided for 
reference. Forward scattering media transfer more 
radiative heat than the isotropic scattering media, 
while the backward scattering media transport less 
radiative heat through the media than the isotropic 
media. The amount of enhancement or reduction in 
the energy transport is also seen to be related to the 
degree of anisotropy associated with each phase func- 
tion (Table 1). The transmitted Q.: * computed at the 
far wall, away from the hot wall source (TV = z,,). 
also indicates the same effect of anisotropy that is 
shown with the net radiative heat flux. The forward 
scattering phase functions also reduce the side wall 
heat losses. 

The effect of the aspect ratio on the radiative heat 

transfer are examined in Fig. 5 for pure scattering 
media, using phase function F2. Corresponding one- 
dimensional S- 14 results are also presented as a 
limiting solution. Figure 5 shows the centerline net 
radiative heat fluxes in the y-direction, with the aspect 
ratio as the parameter. One-dimensional net radiative 
heat flux for pure scattering is a constant over the 
whole slab thickness since V * Q = 0, and in this case, 
(QT) ,~,) = 0.7662. Two-dimensional Q,* deviates 
greatly from the one-dimensional result when u = 1. 
As the aspect ratio is increased, QF becomes flatter 

and approaches the one-dimensional result. For 
c1 = 10, Q,* is a nearly constant average value of 
0.7635, which is very close to the one-dimensional 

result. For other phase functions listed in Table 1, 
similar trends are observed for the varying aspect 
ratios. The different magnitudes for Qt. which can 
result due to the different anisotropies of the phase 
functions, can be seen from the (I = 1 result in Fig. 4. 

Figure 6 shows the net radiative heat fluxes along 
the centerline of scattering media (phase function F2) 
with different scattering albedos. The slope of the 
Q,* distribution along the centerline is steepest when 

o = 0, since energy absorption by the medium reduces 
the radiative heat transfer. As w is increased. the 
absorption becomes less important while the scat- 

tering becomes dominant, causing larger side wall heat 
losses and appreciable but small Q;* components. 

Therefore, Q: becomes larger as w is increased except 
near the hot wall where the back scattered Q_* is 
large for large w. 

The wall reflectivity, p, also plays a significant role 
in the radiative heat transfer. Figure 7 shows the 

net radiative heat fluxes along the centerline of the 
enclosure. The data shown are for a gray square 
enclosure of unit optical thickness, containing a pure 

scattering medium (phase function F2). Q$ is affected 
significantly by the different p’s, because the boundary 
emission source term in equation (6) is proportional 
to t:w = 1 -p. For small p’s, the boundary emission 
source term is large, while the radiative fluxes reflected 
back from the other walls are small. This causes a 
large radiative energy loss through the cold walls. As 
p is increased, the emission source term becomes 
small. The angular distribution of the radiative inten- 
sity also becomes more uniform, and Q~; decreases 
with increasing p. When p = 0.9. Q_z is quite small, 
and the angular distribution of the radiative intensity 
is nearly uniform at all the locations in the medium. 
The heat flux is reduced by a factor of 10, when p is 
changed from 0 to 0.9 at z, = 0 due to a small emission 
source. For a limiting case of p = 1, the boundary 
emission source term in equation (6) becomes zero 
since K, is zero, and Q: is zero everywhere. Therefore. 
the radiation has no contribution to the heat transfer. 
The side wall heat losses are largest for p = 0. 

The optical thickness is another important par- 
ameter for radiative heat transfer. Cases with different 
optical thicknesses are studied for a pure scattering 
medium (phase function F2). In Fig. 8, the centerline 



0.000 0.766958 0.956813 0.923827 0.726575 0.687178 
0.020 0.747546 0.945954 0.909987 0.706159 0.665768 
0.060 0.728379 0.930752 0.893455 0.686828 0.646392 
0.100 0.706271 0.911806 0.873262 0.664805 0.624567 
0.140 0.683518 0.892072 0.851966 0.642318 0.602443 
0.180 0.660155 0.871542 0.829618 0.619373 0.579992 
0.220 0.635295 0.848916 0.805209 0.595081 0.556332 
0.260 0.608619 0.823535 0.778325 0.569125 0.531152 
0.300 0.580580 0.795751 0.749412 0.541947 0.504883 
0.340 0.551957 0.766425 0.719313 0.514303 0.478258 
0.380 0.523486 0.736463 0.688861 0.486905 0.451960 
0.420 0.495735 0.706615 0.658723 0.460295 0.426506 
0.460 0.469084 0.677425 0.629366 0.434831 0.402230 
0.500 0.443748 0.649236 0.601073 0.410712 0.379316 
0.540 0.419826 0.622244 0.573995 0.388026 0.357839 
0.580 0.397358 0.596557 0.548208 0.366802 0.337817 
0.620 0.376352 0.572229 0.523748 0.347042 0.319247 
0.660 0.356797 0.549284 0.500628 0.328729 0.302108 
0.700 0.338667 0.527717 0.478836 0.311831 0.286362 
0.740 0.321920 0.507498 0.458344 0.296300 0.271957 
0.780 0.306497 0.488580 0.439109 0.282073 0.258824 
0.820 0.292332 0.470905 0.421082 0.269074 0.246886 
0.860 0.279361 0.454411 0.404216 0.257232 0.236062 
0.900 0.267533 0.439043 0.388476 0.246487 0.226286 
0.940 0.256818 0.424754 0.373843 0.236797 0.217509 
0.980 0.247184 0.411503 0.360318 0.228112 0.209670 
1.000 0.247123 0.407981 0.357322 0.228617 0.210689 

Effect of anisotropic scattering on radiative heat transfer 

Table 2. QT’s along the centerline (z,/r, = 0.5) for different phase functions : 
p = 0, 0 = 1.0, ZXL = rvr. = 1.0 

rYlrYL IS0 Fl F2 Bl B2 

0.9 

0.6 

'6 
0.5 phase function :FZ 

0-0.1-n 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1.0 

Ty/Ty,, 

FIG. 5. Effect of the aspect ratio on the centerline net radiative 
heat flux in they-direction (1-D vs 2-D) (p = 0, w = 1 .O, and 

r XL = ZVL = 1.0). 

net radiative heat fluxes in the y-direction are pre- 
sented with the optical thickness as the parameter. 
Q,*‘s are large at small optical thicknesses since the 
resistance through the medium is small (Q; * is much 
smaller compared to Q,’ *), and they decrease to small 
values and become flatter at large optical thicknesses 
due to larger heat resistances. For a large optical 
thickness of 10, centerline Q,* varies from 0.51072 at 
rv = 0 to 0.11005 at rY = rYL. This distribution is quite 
different from the 1-D uniform result of 0.28462, 
due to the side wall heat loss for the square enclosure. 
When the optical thickness becomes very large, the 
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FIG. 6. Effect of the scattering al&do on the centerline 
net radiative heat flux in the y-direction (p = 0 and 

z XL = ZYL = 1.0). 

trends shown in Fig. 8 suggest that the two-dimen- 
sional result should approach the uniform one-dimen- 
sional result of nearly zero flux at the centerline. 
Figure 8 also shows the numerical error associated 
with a finite grid near the hot wall. Using a finer grid 
of 52 x 52 control volumes eliminates the error for 
z = 2.5. Finer or non-uniform grids would improve 
the results for larger optical depths. 

The distribution of Qy*, evaluated at different x 
positions along the hot surface (r, = 0), provides 
another view of the effect of the various parameters 
on the radiative transfer. In Fig. 9, the hot wall Q$+ 
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phase function : F2 0-o : p = 0 
.-. :p=o.1 
A-A : p = 0.25 
.-. :p=o.5 
o---o : p = 0.75 
.-. :p=o.9 
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FIG. 7. Effect of wall reflectivity on the centerline net 
radiative heat flux in the y-direction (o = 1.0 and 

t,L = t,,1, = 1.0). 

distribution is shown for different scattering phase 
functions. In comparison to the isotropic scattering, 
the forward scattering phase functions tend to 
enhance the radiative heat release from the hot wall, 
and the backward scattering phase functions tend to 
reduce it. The amount of heat release is then related 
to the degree and the sign of the phase function 
anisotropy. 

The hot wall Q: distribution along the x-direction 
has also been examined for the effect of other par- 
ameters also, although the data are not presented 
here. The hot wall Q,* is 1 at w = 0, since there is no 
backscattered radiation (Q; * = 0 but Q: * = 1 at the 
hot wall when p = 0). It decreases monotonically with 
an increasing o, since the backscattered radiation 
increases with increasing o. Optical thickness effects 
also show a similar trend as for w. At small optical 
thickness, Q,* has nearly a uniform value of 1 .O (simi- 
lar to the optically thin plane parallel solution), since 
the medium reflects back negligible amounts of 
energy, while the energy transferred away from the 

1.0 

0.1 phase function : F2 

’ 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1.0 

%yH 

FIG. 8. Effect of the optical thickness on the centerline net 
radiative heat flux in the y-direction (p = 0 and w = 1 .O). 
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FIG. 9. Effect of anisotropy on the net hot surface radiative 
heat flux (p = 0, w = 1.0, and zzL = Q. = 1.0). 

hot wall remains unchanged. As the optical thickness 
is increased, the heat transfer rates are decreased. Heat 
released from the hot wall in the two-dimensional 
problem is much larger than in the one-dimensional 
case for the same optical thickness. This is because 
the two-dimensional medium loses large amounts of 
energy through the side walls, and therefore requires 
a larger energy supplied to the hot wall to maintain 
the constant temperature. 

The average incident radiation, G*‘s, which indi- 
cate the average level of the radiation intensity, are 
shown in Fig. 10 (data set in Table 3) for various 
scattering phase functions. For different scattering 
phase functions, the G*‘s vary most significantly for 
the w = 1 case when p = 0. As compared to the iso- 
tropic results, flatter distributions of G* are observed 
for the forward scattering phase functions, since the 
radiative intensity scattered away from the centerline 
is small and the transmitted intensity is large. The 
G*‘s for the backward scattering phase functions 
show steeper distributions than isotropic, since the 

isotropic 

;: 

:: 

FIG. 10. Effect of anisotropy on the centerline average inci- 
dent radiation (p = 0, o = 1.0, and rzL = rYL = 1 .O). 
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Table 3. G*‘s along the centerline (T,& = 0.5) for different phase functions: 
p=o,o=1.o,z XL = Q = 1.0 

TY 1% IS0 Fl F2 Bl B2 
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0.000 0.626625 0.537238 0.557988 0.643562 0.660444 
0.020 0.600355 0.518740 0.535868 0.616569 0.632666 
0.060 0.556250 0.484921 0.498624 0.570840 0.585263 
0.100 0.512708 0.449798 0.461528 0.525645 0.538400 
0.140 0.47453 1 0.419550 0.429650 0.485822 0.496928 
0.180 0.441868 0.394810 0.403170 0.451563 0.461070 
0.220 0.412683 0.373385 0.379963 0.420857 0.428843 
0.260 0.385379 0.353413 0.358333 0.392118 0.398681 
0.300 0.359364 0.334146 0.337640 0.364761 0.369998 
0.340 0.334617 0.315545 0.317857 0.338761 0.342773 
0.380 0.311256 0.297782 0.299127 0.314241 0.317122 
0.420 0.289369 0.28 1022 0.281556 0.291279 0.293117 
0.460 0.268964 0.265367 0.265191 0.269885 0.270764 
0.500 0.249999 0.250859 0.250021 0.250002 0.249999 
0.540 0.232387 0.237473 0.23598 1 0.231539 0.230725 
0.580 0.216013 0.225155 0.222990 0.214376 0.212815 
0.620 0.200763 0.213820 0.210952 0.198395 0.196136 
0.660 0.186516 0.203371 0.199764 0.183463 0.180560 
0.700 0.173155 0.193714 0.189331 0.169461 0.165955 
0.740 0.160570 0.184751 0.179558 0.156275 0.152204 
0.780 0.148657 0.176397 0.170359 0.143791 0.139191 
0.820 0.137300 0.168568 0.161635 0.131900 0.126801 
0.860 0.126371 0.161186 0.153281 0.120471 0.114907 
0.900 0.115699 0.154161 0.145179 0.109337 0.103343 
0.940 0.105067 0.147404 0.137162 0.098291 0.091917 
0.980 0.094238 0.140816 0.129025 0.087135 0.080447 
1.000 0.088360 0.138057 0.125029 0.081141 0.074333 

radiative intensity scattered away from the centerline 

is large and the transmitted intensity is small due to 

the large backscattered component. 

When o = 0, G* is small, since most of the radiative 

energy is absorbed by the cold medium, while the 

medium emits and scatters no radiative energy. As 

w is increased from 0 to 1, G* increases, since the 

absorption is reduced relative to scattering. At w = 1, 

the largest average intensity distribution is obtained. 

For small albedos, the variations due to different scat- 
tering phase functions are then small compared to the 
w = 1 results. For isotropic media in gray enclosures, 
refs. [5, 7j report a similar effect due to different p’s as 
was found in this anisotropic media study. However, 
the magnitudes and the slopes of G*‘s are strongly 
dependent upon the scattering phase functions used. 

4.2. Isothermal emission problems 
Another simple problem considered in this study is 

the isothermal emission case, where all the boundary 
sources are zero, and the medium in the black square 
enclosure emits uniform radiative energy over the 
whole region. That is, Ebwl = Ebw2 = Ebw3 = Ebw4 = 0 
and E,, = constant. 

The effect of anisotropy on isothermal emission is 
found not to be important when symmetric boundary 
conditions are considered. The anisotropic effects can- 
cel out, and the resulting intensity field looks like that 
of isotropic scattering. The average incident radiation 
and the radiative heat flux obtained for different 
anisotropic phase functions are very similar to each 

FIG. 11. Net radiative heat flux at the wall for isothermally 
emitting media (p = 0 and z,, = zvL = 1.0). 

other in tl eir magnitudes and distributions. This same 
conclusion holds true for both the one- and two- 
dimensional geometries that have been tested. Since 
the results obtained with different phase functions 
are all similar, only the isothermal emission result 
obtained for the phase function F2 is presented in 
Fig. 11. 

Figure 11 shows the net radiative heat transfer rates 
at a boundary surface for different albedos. Solution 
of the isothermal emission problems with no other 
radiative source is strongly dependent upon the scat- 
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tering albedo. When w is close to one, the radiative 
source, equation (2), is nearly zero. For pure scat- 
tering there is no source. As w becomes close to zero, 
the source becomes large, and the largest source con- 
tribution is obtained for the non-scattering case of 
w = 0. 

5. CONCLUSIONS 

Numerical solutions of the radiative heat transfer in 
rectangular enclosures, with genera1 Mie-anisotropic 
scattering media, has been obtained using the accurate 
S-N discrete ordinates method. Benchmark radiative 
heat transfer results are provided for anisotropic scat- 
tering media described by four different phase func- 
tions. The heat transfer quantities of heat flux and 
average incident radiation are obtained from the radi- 
ative intensity solutions. The S- 14 results presented 
in this paper are quite accurate and will serve as a 
reference for later studies on radiative heat transfer in 
similar geometries. A parametric study reveals strong 
effects of the anisotropy on the radiative heat transfer 
in absorbing-scattering media, when the environment 
is nonsymmetric. For a symmetric environment, the 
anisotropic effects are cancelled out to give *an iso- 
tropic result, regardless of the anisotropy of the phase 
functions applied. 

Acknowledgements-This work was supported in part by 
the National Science Foundation Grant No. NSF/CBT- 
8451076. The PYI award was partly supported by the Exxon 
Corporation. A grant from the Minnesota Supercomputer 
Institute is also gratefully acknowledged. 

REFERENCES 

1. R. D. M. Garcia and C. E. Siewert, Benchmark results 
in radiative transfer, Transp. Theory Statist. Phys. 14(4), 
437483 (1985). - 

2. H. Lee and 0. Buck&, Scaling scattering 
in radiation heat transfer for medium, Trans. 
ASME 104,68-75 

3. F. Modest and F. Azad, The influence and treat- 
of Mie-anisotropic scattering in radiative heat 

transfer, Trans. ASME 102,92-98 (1980). 

4. 

5. 

6. 

7. 

8. 

9. 

C. Flicke, The phase-integral method for radiative trans- 
fer problems with highly-ueaked chase functions. J. 
Quant. Spectrosc. Rad~t.~&nsfer iO,4299445 (1978). 
W. A. Fiveland. 

in 
isotropically scattering rectangular enclosures, J. Ther- 
mophys. l(l), 69-76 (1987). 
A. C. Ratzel III and J. R. Howell, Two-dimensional 
radiation in absorbing-emitting-scattering media using 
the P-N approximation, ASME Paper, 82-HT-19 
(1982). 
G. L. Stephens, Radiative transfer in spatially het- 
erogeneous, two-dimensional, anisotropically scattering 
media, J. Quant. Spectrosc. Radiat. Transfer 36(l). 51 
67 (1986). 
A. L. Crosbie and R. G. Schrenker, Multiple scattering 
in a two-dimensional rectangular medium exposed to 
collimated radiation, .I. Quant. Spectrosc. Radial. Trans- 
fer 33(2), 101-125 (1985). 

10. M. P. Mengiic and R. Viskantd, Radiative transfer in 
three-dimensional rectangular enclosures containing 
inhomogeneous, anisotropically scattering media, J. 
Quant. Spectrosc. Radiat. Transfer 33(6). 533-549 
(1985). 

12. 

13. 

14. 

15. 

11. B. G. Carlson and K. D. LdhroD. Transuort theorv-- 
the method of discrete-ordinates. in Computinq Methid,r 
in Reactor Physics (Edited by H. Greenspan. C. N. 
Kelber and D. Okrent). Gordon & Breach, New York 
(1968). 
G. C. Clark, C. M. Chu and S. W. Churchill, Angular 
distribution coefficients for radiation scattered by a 
spherical particle, J. Opt. Sot. Am. 47(l), 81-84 (1957). 
W. .I. Wiscombe, Improved Mie scattering algorithms, 
Appl. Optics 19(9), 150551509 (1980). 
S. Chandrasekhar, Radiative Transfer, pp. 1499150. 
Dover, New York (1960). 
K. D. Lathrop, Spatial differencing of the transport 
equation : positivity vs accuracy, J. Computational Phys. 
4,475498 (1968). 
K. D. Lathrop and F. W. Brinkley. TWOTRAN-II : an 
interfaced, exportable version of the TWOTRAN code 
for two-dimensional transport, Los Alamos Scientific 
Laboratory Report #LA-4848-MS (1973). 
R. Siegel and I. R. Howell, Thermal Radiation Heat 
Transfer. 2nd Edn. on. 461462 and 591. McGraw-Hill, 
New York (1981)’ L ’ 
M. N. ozisik, Radiative Transfer. p. 83. Wiley-lnter- 
science, New York (1973). 
W. M. Irvine, The asymmetry of the scattering diagram 
of a spherical particle, Bull. Astr. Insts Neth. 17(3). 176~ 
184 (1963). 

16. 

17. 

18. 

19. 

EFFET DE LA DIFFUSION ANISOTROPE SUR LE TRANSFERT RADIATIF DANS 
DES CAVITES RECTANGULAIRES BIDIMENSIONNELLES 

R&nn&-Le transfert de chaleur radiatif dans des cavites rectangulaires bidimensionnelles est ttudie en 
utilisant la methode des ordonnees disc&es S-N. Le milieu dans la cavite est gris et il absorbe, &met et 
diffuse de fapon anisotrope l’bnergie radiante. Les fonctions de phases anisotropes de Mie sont trait&es par 
des developpements en polynomes de Legendre. Les rayonnements incidents moyens et les flux de chaleur 
radiatifs sont present&s sous forme de graphiques et de tables. L’anisotropie des fonctions de phase joue 
un role sensible dans le transfert de chaleur par rayonnement quand la condition limite n’est pas symetrique, 
mais peu important pour des environnements symbtriques. Les pertes de chaleur par les parois laterales 
sont significatives pour des fonctions de phase de ritrodiffusion, des ipaisseurs optiques mod&r&es, des 

albedos importants, et des faibles reflectivites de surface. 
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EINFLUSS EINER ANISOTROPEN STREUUNG BE1 DER WARMEUBERTRAGUNG 
DURCH STRAHLUNG IN ZWEIDIMENSIONALEN RECHTWINKLIGEN HOHLRAUMEN 

Zusammenfassung-Der Warmetransport durch Strahhmg in zweidimensionalen rechtwinkligen Hohlrlu- 
men wurde unter Verwendung der S-N-Methode mit diskreten Ordinaten untersucht. Das Medium im 
Hohlraum ist grau turd absorbiert, emittiert und streut anisotrop Strahlungsenergie. Allgemeine Mie- 
anisotrope Phasenfunktionen werden mit Legendre’schen Polynomausdriicken dargestellt. Die mittlere 
eingefallene Strahlung und der W&me flul3 durch Strahlung sind in grafischer und tabellarischer Form 
dargestellt. Die Anisotropie der Phasenfunktionen spielt eine entscheidende Rolle beim Wlrmetransport 
durch Strahlung, wenn die Randbedingungen nicht-symmetrisch sind ; sie ist jedoch bei einer symmetrischen 
Umbegung unwichtig. Die Warmeverluste durch die Seitenwiinde sind signifikant fiir Phasenfunktionen bei 
Riickstrahlung, mlBige optische Dicken, groBe Streuungsalbedos und geringe Oberll&chenreflektivitlten. 

BJIHdHHE AHH3OTPOHHOFO PACCEIIHHII HA JIYHHCTbIH TEHJIOIIEPEHOC B 
ABYMEPHbIX I-IPIIMOYFOJIbHbIX HOJIOCTIIX 

AIIEOTwm--MeTOnOM micKpeTHbIx OpmHaT S-N nccnenyercx nyrricrbtfi rennonepetroc B DByMepHbIX 

IIpnMOyrOnbHbIX lTOJlOCTnX.C~LIa B IlOJlOCTlI RBJlneTCn cepOii,nOrnOur;uornei,Hsnyuaro~eeit W aHH3OT- 

pon~o paccmieato~eii. 06we -3oTponHbre @aasome *~HKLIHH Mu paccMaTpm3amTcn c noh40lllb~) 

pa3no*eHG B pnn nonmioh5oB JIexcqa.CpemHe 3HaqeHm nanamuero HsnyneHmn nywicrble ren- 
nome noroxri npencraaneHar rpa@iwcKH H B ewe Ta6nHs. AHsisoTponun &uonoii &~~qsisi HrpaeT 

Baxcaym ponb npH nywicrora ren.xonepertoce,xorna rpaHmHoe ycnoBHe nmneTcn Hemme~H~Hbm, 

HO HeCyUWTBeHHa B CHMMeTpWIHOM OKpyXWEH. nOTepH TellJla ~OKOB~IMH CTeHKaMA 3HaSHTenbHbI 

mn (pa3omx &w~wiii paccenHm Ha3an, mn cpenmx onrlnecxwx Ton-, 6onbruax 3Haqemiil 

anb6enopaccenHnxwhfanorooTpareHm0~ nonepxnccru. 

HllT 31:8-L 


